Proof 1: By Taylor series

Here are the Maclaurin expansions 1 for cos(x),sin(x),\cos(x), \sin(x), and eye^y.

cos(x)=n=0(1)n(2n)!x2n=1x22!+x44!x66!+sin(x)=n=0(1)n(2n+1)!x2n+1=xx33!+x55!x77!+ey=n=0ynn!=1+y+y22!+y33!+y44!+\begin{aligned} \cos(x) &= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n)!} x^{2n} = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \cdots\\ \sin(x) &= \sum_{n=0}^{\infty} \frac{(-1)^n}{(2n+1)!} x^{2n+1} = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \cdots\\ e^y &= \sum_{n=0}^{\infty} \frac{y^n}{n!} = 1 + y + \frac{y^2}{2!} + \frac{y^3}{3!} + \frac{y^4}{4!} + \cdots\\ \end{aligned}

Letting y=ixy = ix, we get 2

eix=n=0(ix)nn!=n=0inxnn!=1+ixx22!ix33!+x44!+ix55!x66!+=(1x22!+x44!+)+i(xx33!+x55!+)=cos(x)+isin(x)\begin{aligned} e^{ix} = \sum_{n=0}^{\infty} \frac{(ix)^n}{n!} = \sum_{n=0}^{\infty}i^n\frac{x^n}{n!} &= 1 + ix - \frac{x^2}{2!} - i \frac{x^3}{3!} + \frac{x^4}{4!} + i \frac{x^5}{5!} - \frac{x^6}{6!} + \cdots\\ &= \left(1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \cdots\right) + i\left(x - \frac{x^3}{3!} + \frac{x^5}{5!} + \cdots\right)\\ &= \cos(x) + i\sin(x) \quad \blacksquare \end{aligned}

Lemma 1: The magnitude of eixe^{ix} is 1xR1 \quad \forall x \in \mathbb{R}

Proof. We have shown that eixe^{ix} is a complex number a+bia+bi, where a=cosxa=\cos x and b=sinxb=\sin x. The magnitude of a complex number is its distance, on the complex plane, from (0,0)(0, 0). We find this distance using the distance formula. eix=cos(x)+isin(x)=cos2(x)+sin2(x)=1=1|e^{ix}| = |\cos(x) + i\sin(x)\:| = \sqrt{\cos^2(x) + \sin^2(x)} = \sqrt{1} = 1 \quad \blacksquare

The significance of this result is that on the complex plane 3, eiθe^{i\theta} represents a point that is a distance of one unit away from the origin (0,0)(0, 0). Varying θ\theta from 00 to 2π2 \pi results in the unit circle.

The θ\theta parameter measures the counterclockwise angle the point makes with the positive x axis. At this point, since we’re determining a point’s position by its angle, we should wonder how this could be connected with polar coordinates.

A polar coordinate requires an extra parameter, rr. Otherwise, we are stuck with only the unit circle and can’t represent points a distance of, for example, 2 units from the origin. We simply add that parameter rr by multiplying by rr.

Lemma 2 (polar coordinates): For all points x+iyx+iy on the complex plane, there exist rR0r \in \mathbb{R}^{\geq 0} and θ[0,2π)\theta \in [0, 2\pi) such that reiθ=r(cosθ+isinθ)=rcosθ+i(rsinθ)=x+iyre^{i\theta} = r(\cos \theta + i \sin \theta) = r\cos \theta + i(r\sin \theta) = x+iy

Proof 2: By differential equation

Consider the following differential equation: df(x)dx=if(x)\frac{df(x)}{dx} = if(x)

One solution is f(x)=eixf(x) = e^{ix} because ddxeix=ieix\frac{d}{dx}e^{ix} = ie^{ix}

Another solution is f(x)=cos(x)+isin(x)f(x) = \cos(x)+i\sin(x) becauseddx(cos(x)+isin(x))=sin(x)+icos(x)=i(cos(x)+isin(x))\frac{d}{dx}\left(\cos(x)+i\sin(x)\right) = -\sin(x)+i\cos(x) = i\left(\cos(x)+i\sin(x)\right)

and both functions satisfy f(0)=1f(0) = 1: f(0)=ei(0)=cos(0)+isin(0)=1f(0) = e^{i(0)} = \cos(0) + i\sin(0) = 1

Hence, the functions are identical; that is, eix=cos(x)+isin(x)e^{ix} = \cos(x)+i\sin(x) \quad \blacksquare

Lemma 3 (Euler’s identity): eπi=1e^{\pi i} = -1

Proof.

eπi=cos(π)+isin(π)=1+i(0)=1 \begin{aligned} e^{\pi i} &= \cos(\pi) + i\sin(\pi) \\ &= -1 + i(0)\\ &= -1\\ & \blacksquare \end{aligned}

Lemma 4: ln(1)=iπ\ln(-1)=i \pi

Proof. Take the natural log of both sides of Euler’s identity: eπi=1    πi=ln(1) e^{\pi i} = -1 \implies \pi i = \ln(-1) \quad \blacksquare

So then ln(23)=ln(1)+ln(23)=πi+ln(23)\ln(-23) = \ln(-1) + \ln(23) = \pi i + \ln(23).


  1. A Maclaurin series is a Taylor series about the point 0. ↩︎

  2. It’s just the exe^x expansion but with the powers of ii (1,i,1,i,1,)(1, i, -1, -i, 1, \ldots) as coefficients. We note that the only terms with ±i \pm i will have nn odd since i1=i3=ii^1=-i^3=i, and vice versa for the terms without ii. Also, we note that any two terms that are 2 apart will have opposite signs since they differ by i2=1i^2=-1↩︎

  3. On the complex plane, the xx axis represents all real numbers R\mathbb{R}, and the yy axis represents all imaginary numbers bibi for bRb \in \mathbb{R}↩︎